5 research outputs found

    Novel functional anti-HER3 monoclonal antibodies with potent anti-cancer effects on various human epithelial cancers

    Get PDF
    Resistance of progressive cancers against chemotherapy is a serious clinical problem. In this context, human epidermal growth factor receptor 3 (HER3) can play important roles in drug resistance to HER1- and HER2- targeted therapies. Since clinical testing of anti-HER3 monoclonal antibodies (mAbs) such as patritumab could not show remarkable effect compared with existing drugs, we generated novel mAbs against anti-HER3. Novel rat mAbs reacted with HEK293 cells expressing HER3, but not with cells expressing HER1, HER2 or HER4. Specificity of mAbs was substantiated by the loss of mAb binding with knockdown by siRNA and knockout of CRISPR/Cas9-based genome-editing. Analyses of CDR sequence and germline segment have revealed that seven mAbs are classified to four groups, and the binding of patritumab was inhibited by one of seven mAbs. Seven mAbs have shown reactivity with various human epithelial cancer cells, strong internalization activity of cell-surface HER3, and inhibition of NRG1 binding, NRG1-dependent HER3 phosphorylation and cell growth. Anti-HER3 mAbs were also reactive with in vivo tumor tissues and cancer tissue-originated spheroid. Ab4 inhibited in vivo tumor growth of human colon cancer cells in nude mice. Present mAbs may be superior to existing anti-HER3 mAbs and support existing anti-cancer therapeutic mAbs

    Growth Cone Phosphoproteomics Reveals that GAP-43 Phosphorylated by JNK Is a Marker of Axon Growth and Regeneration

    No full text
    Summary: Neuronal growth cones are essential for nerve growth and regeneration, as well as for the formation and rearrangement of the neural network. To elucidate phosphorylation-dependent signaling pathways and establish useful molecular markers for axon growth and regeneration, we performed a phosphoproteomics study of mammalian growth cones, which identified >30,000 phosphopeptides of ∼1,200 proteins. The phosphorylation sites were highly proline directed and primarily MAPK dependent, owing to the activation of JNK, suggesting that proteins that undergo proline-directed phosphorylation mediate nerve growth in the mammalian brain. Bioinformatics analysis revealed that phosphoproteins were enriched in microtubules and the cortical cytoskeleton. The most frequently phosphorylated site was S96 of GAP-43 (growth-associated protein 43-kDa), a vertebrate-specific protein involved in axon growth. This previously uncharacterized phosphorylation site was JNK dependent. S96 phosphorylation was specifically detected in growing and regenerating axons as the most frequent target of JNK signaling; thus it represents a promising new molecular marker for mammalian axonal growth and regeneration. : Neuroscience; Developmental Neuroscience; Bioinformatics; Proteomics Subject Areas: Neuroscience, Developmental Neuroscience, Bioinformatics, Proteomic

    Crosstalk in Inflammation: The Interplay of Glucocorticoid Receptor-Based Mechanisms and Kinases and Phosphatases

    No full text
    Glucocorticoids (GCs) are steroidal ligands for the GC receptor (GR), which can function as a ligand-activated transcription factor. These steroidal ligands and derivatives thereof are the first line of treatment in a vast array of inflammatory diseases. However, due to the general surge of side effects associated with long-term use of GCs and the potential problem of GC resistance in some patients, the scientific world continues to search for a better understanding of the GC-mediated antiinflammatory mechanisms
    corecore